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Abstract—Deep learning-based image super-resolution has provided
very impressive reconstruction quality. However, their running time still
sets barriers for real-time applications. In this paper, we propose a Global
context aggregation and Local queue jumping Network (GLNet) which
provides the more effective image SR given a certain number of model
parameters. In our GLNet, we reconsider the model design of the real-
time image SR paradigm. Then, we construct a deep network with fewer
channels but a deeper structure to effectively aggregate the global context.
The dilated convolutions are used as parts of basic units of our GLNet,
which further enlarges the receptive field. Besides, an additional local
queue jumping path is employed to connect the first-layer feature map
and the last-layer feature map to better model the local signal structure.
Extensive experiments demonstrate the superiority of our GLNet which
offers new state-of-the-art performance considering both reconstruction
quality and time consumption.

Index Terms—Real-Time Image Super-Resolution, Global Context
Aggregation, Local Queue Jumping, Deep Learning

I. INTRODUCTION

Nowadays, it is a common demand to embrace the high-quality
video display. Limited by current hardware conditions, the presence
of image and video super-resolution (SR) is promising. SR enlarges
a low-resolution (LR) video to a high-resolution (HR) one solely
from the perspective of software. In past decades, many models
are proposed to build the mapping between LR and HR space, i.e.
Markov random field [1], neighbor embedding [2], sparse coding [3],
and anchor regression [4], efc. These efforts bring the impressive
reconstruction visual quality to us, however, most of these works are
still far away from the practical use because of the low time efficiency.
The presence of deep learning and artificial neural networks is
changing the reality.

In recent years, deep neural networks show great potential in
high-level computer vision tasks like object detection [5], [6], face
recognition [7], and pedestrian detection[8]. CNN is also applied
to address image restoration problems like denoising, dehazing, and
super-resolution. Super-Resolution methods based on deep learning
framework were first proposed in [9], [10]. With convolutional oper-
ations modeling transformation from LR images to HR images, these
methods are superior to sparse-coding-based methods in performance.
To be the pioneer of deep super-resolution, the network only consists
of three convolutional layers, and later works [11], [12] reach state-
of-the-art performance by deepening the network, which adds more
nonlinearities and expands the receptive field of one neuron. These
characteristics enable the deeper architectures to take richer context
into consideration and to model non-linear transformation of more
complexity. To successfully train such a deep network, the residual
network is proposed [13] to accelerate the training process. With

* Corresponding author. This work was supported by National Natural
Science Foundation of China under contract No. 61472011.

978-1-5386-0462-5/17/$31.00 ©2017 IEEE.

the residual connection, gradients can be back-propagated to shallow
layers in a very deep model.

Metrics for image super-resolution include both reconstruction
quality and time-efficiency. One challenging problem for image
super-resolution is to reduce the computational complexity of the
algorithm to facilitate real-time applications like video surveillance
and real-time video streaming. To accelerate the SR process, in [14],
the feature extraction and transformation are performed in LR space.
Faster super-resolution neutral network (FSRCNN) [15] provides
the observations that, decreasing the number of channels will ef-
fectively reduce the number of the parameters of the network, and
thus accelerate the SR process. Therefore, FSRCNN embeds the
network shrinkage and expanding steps, to save a large part of model
parameters and running time. Besides, it simplifies the structure of the
network. These shrinkage and simplification results in a degradation
of the quality of the reconstruction framework.

In this paper, we first revisit the real-time image SR. Then, to
improve the modeling capacity, we reconsider the model design
of the real-time image SR paradigms. Then, we construct a deep
network to enlarge the receptive field and enhance the non-linear
modeling capacity of the network. This is achieved by using a deeper
architecture with dilated convolutions as its parts of basic units.
Besides, an additional local queue jumping path is employed to
connect the first-layer feature map and the last-layer feature map
to better model the local signal structure. GLNet also has better
scalability. By enlarging the number of parameters of the network,
the quality can be further improved accordingly. Experimental results
prove that with equal reconstruction quality, our model runs with
lower latency, compared with state-of-the-art methods.

II. GLNET FOR REAL-TIME IMAGE SR
A. Real-Time Image SR

As illustrated in [9], deep-learning-based image SR usually con-
sists of three steps: 1) feature extraction; 2) nonlinear mapping; 3)
reconstruction. This plain paradigm does not computationally efficient
because its design does not consider the effect of the number of
channels and spatial resolutions on the time complexity of deep
networks.

To fasten the SR process, in [15], two improvements are employed.
First, the feature extraction and non-linear mapping are performed in
the LR space instead of the HR space, thus the feature map size
to be processed in SR is largely reduced. Second, the number of
channels plays an important role in the total number of parameters,
thus the extracted features are projected into a low-dimensional space
first before the non-linear mapping. However, in [15], two issues are
neglected in its network design. First, the parameter allocation is not
well optimized. For example, the kernel size of the convolutional
layer for feature extraction is 5 X 5, which uses almost three times
parameters than a 3 X 3 convolution. Second, when expanding the
receptive field of a network by stacking the convolutional layers,
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the capacity of the network to describe the local signal structures is
weakened.

B. Time Complexity Analysis

To address these two issues, we first analyze the time complexity
of the real-time image SR. The effort to make super-resolution meth-
ods time-efficient is critical to real-world applications. Traditional
upscaling algorithms based on interpolation include a large number
of matrix manipulation in estimating the lost information, which
brings in high algorithm complexity. Example-based super-resolution
algorithms solve this problem by separating the training and recon-
struction phases. As the training process can be done based on an
external dataset offline, we only need to care about the reconstruction
time in practice. Deep learning based super-resolution inherits the
characteristics of example-based methods, thus in practice, we only
need to estimate the running time of the reconstruction phrase as
follows,

O{(ffnl +n1f22n2+n2f32) SHR}, (D)

where Spr is the resolution of the HR image and n; stands for
the dimension of the feature vector for layer i. For the first layer,
n1 stands for the number of the channels of the input image.
From Eqn. (1), it can be observed that, given a certain number of
parameters, the width and depth of the network need to be balanced
to achieve good performance. In our GLNet, we design a narrower
and deeper network than FSRCNN to obtain superior performance.

C. Overall Architecture of GLNet

Fig. 1 shows the architecture of our proposed GLNet model.
Following real-time SR paradigm, it goes through five steps for image
and video SRs: feature extraction, shrinkage, nonlinear mapping,
expanding and reconstruction. Comparing with existing real-time SR
methods, GLNet has two distinguishing characteristics:

o A thinner and deeper network structure for global context
aggregation. Each layer has fewer channels. Given a certain
parameter number, the whole network is deeper. With dilated
convolutions as parts of its units, GLNet has a very large
receptive field.

o An additional local queue jumping connection between the first
and penultimate layers enables the network to better describe
the local signal structures.

978-1-5386-0462-5/17/$31.00 ©2017 IEEE.

Local Queue Jumping

GLNet adopts a thiner and deeper network structure for global context aggregation with an additional local queue jumping connection.

Note that, functionally global context aggregation is achieved via the
three parts of GLNet — the dimension shrinkage, non-linear mapping
and dimension expanding phrases jointly.

D. Detailed Illustrations for GLNet

In the following, we discuss each part separately. Their basic
settings are provided in Table I and II. For feature extraction,
shrinkage, expanding and reconstruction phrases, (#1, #2, #3, #4)
denotes the number of input channels, height and width of the
convolution kernel, and the number of output channels, respectively.
For non-linear mapping, the additional #5 denotes the layer number
of the stacked convolutions.

a) Feature Extraction: In feature extraction phrase, GLNet
learns a transformation in the LR space, and the spatial size of the
output features is the same to the LR image. GLNet uses a 3 x 3
convolution as this layer, which saves almost 2/3 parameters than the
5 x 5 convolution in FSRCNN.

b) Dimension Shrinkage: From Eqn. (1), it is observed that,
time complexity is largely determined by the dimension of the
output feature vector, which is n; in our formulation. In our GLNet,
compared with FSRCNN, we use a narrower network with fewer
channels. Thus, a single basic convolution layer of our GLNet saves
more parameters than that of FSRCNN.

¢) Nonlinear Mapping: Increasing the size of the filter kernels,
the depth of the convolution layers and the dimension of the feature
maps can result in increasing both the quality of the output image
and the time complexity. Thus, we face a trade-off between quality
and time complexity. Jointly with dimension shrinkage, we use
fewer channels in each convolution layer but stack more ones.
Comparatively, for the non-linear mapping, the number of channels
of GLNet and FSRCNN is 10 and 12, respectively. And the depth
of them is 4 and 8, respectively. As a result, GLNet is deeper than
FSRCNN. For GLNet, half of the convolutions used in non-linear
mapping are dilated convolutions with the dilation factor as 2 as
shown in Fig. 2. Thus, the receptive field of GLNet can reach 29 x 29
comparing with 15 x 15 of FSRCNN.

d) Dimension Expanding: The dimension expanding is the
inverse manipulation of previous dimension shrinkage. This operation
greatly improves the quality of the constructed image.

e) Sub-Pixel Reconstruction: The up-scaling operations project-
ing the LR features to the HR ones are performed via sub-pixel
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TABLE I
PARAMETER SETTINGS OF FSRCNN WITH RESIZE FACTOR s = 3

Network Model Feature Extraction Shrinkage Non-Linear Mapping Expanding Reconstruction Receptive Field
- (I1x5x5x56) [ (56%x1x1x12) (12x3x3x12) x4 [ (12Xx1x1x56) [ (56x9x%x9x1) B -
FSRCNN | (56,12, 4) 1400 672 5184 672 4536 1515
. . (1 x5x5x32) (32 x1x1x5) (5x3x3x5)x1 (5x1x1x32) (32 x9x9x1)
FSRCNN-s | (32,5,1) 800 160 225 160 2592 9x9
TABLE 11
PARAMETER SETTINGS OF GLNET WITH RESIZE FACTOR s = 3
Network Model Feature Extraction Shrinkage Non-Linear Mapping Expanding Reconstruction Receptive Field
(1 x3x3x48) | (48 x1x1x 10) (10 x3x3x10)x8 | (10x1x1x48) | (48x9x9x1)
GLNet (48, 10, 48, 8) 432 480 79200 480 3888 29 x 29
(1 x3x3x32) (32 x1x1x5) (5x3x3x5)x3 (5x1x1x32) (32 x9x9x1)
GLNets | (32,5,32,3) 988 160 675 160 2592 17 x 17
TABLE III
COMPARISON OF PSNR (DB) AND TIME (S) ON Set5 AND Set14. SF
DENOTES THE SCALING FACTOR. THE BEST AND SECOND BEST RESULTS
ARE DENOTED IN BOLD AND WITH UNDERLINE, RESPECTIVELY.
Factor PSNR/Time PSNR/Time PSNR/Time
Dataset SF Bicubic RAISR FSRCNN-s
X2 33.66/- 36.15/0.018 36.53/0.057
Setb X3 30.39/- 32.21/0.015 32.55/0.025
x4 28.43/- 29.84/0.017 30.04/0.016
Dil £ 1 Dil £ -2 X2 30.23/- 32.13/0.034 32.22/0.102
(2) Dilated factor (b) Dilated factor Setld | x3 2754 | 28.86/0/029 | 29.08/0.042
. . . . . x4 26.00/- 27.00/0.030 27.12/0.023
Fig. 2. ' (a). Normal c.onvolutlon.. (b) Dllateq convo.lutlonA The dilated Dataset SF FSRONN GINets GLNet
convolution skips some pixels to weight farther pixels. Dilated factor denotes D) 36940117 | 36.79/0.068 | 37.25/0.132
the number to skip in the convolution. Sets x3 | 33.06/0.053 | 32.82/0.031 | 33.21/0.070
x4 30.55/0.036 30.40/0.019 30.71/0.044
X2 32.54/0.230 32.46/0.127 32.76/0.345
Setl4d x3 29.37/0.098 29.27/0.056 29.47/0.144
convolution proposed in [14]. x4 27.50/0.064 | 27.40/0.029 | 27.58/0.090

f) Local Queue Jumping Path: Stacking convolutions enlarge
the receptive field of the network effectively, however, the modeling
capacity to describe the local signals may be reduced. In our GLNet,
to better model local signal structure, we add a local queue jumping
path that forwards the first feature map to the last one (before
reconstruction), as shown in the bottom part of Fig. 1.

8) Residual Learning: Following [11], our GLNet predicts the
difference value between the HR and LR images instead of directly
predicting the HR image.

E. Implementation Details

For input RGB image, we first perform a color-space transfor-
mation to transform the image to YCbCr color space, where Y
contains luminance information of the image, Cb and Cr are the
blue-difference and red-difference chroma components, respectively.
In practice, we only exert super-resolution reconstruction on Y
component. For Cb and Cr we simply use bicubic interpolation to
resize. For this reason, we have ¢; = 1 which is the number of
channels of the input images. To determine f; and n; fori =1,2,3
as well as m, we can first refer to the setting of FSRCNN. It has
two common settings of (56,12, 4) and (32,5, 1) for f;,n; and m.
We later denote the setting of (32,5,1) as FSRCNN-s. Suppose we
have a resize factor of s = 3. Table I and II show the configuration
and number of parameters to optimize for each component of the
network.

For a given training set {X(i),Y(i)}f\le, we adopt the Mean
Squared Error (MSE) as the loss function:

N
LOWHABY = & S IFKD (Wi {B) - YOI, @

where {W}, {B} stand for the filter kernels and bias in the convolu-
tion layers, respectively. During the training process, {W}, {B} are
parameters to be optimized.

978-1-5386-0462-5/17/$31.00 ©2017 IEEE.

III. EXPERIMENTAL RESULTS
A. Dataset

Following the experimental setting in [9] and [16], we compare
the proposed method with recent SR methods on three popular
benchmark datasets: Set5 [17], Setl4 [18] and BSD100 [19] with
scaling factors of 2, 3 and 4. The three datasets contain 5, 14 and
100 images respectively. Among them, the Set5 and Set14 datasets are
commonly used for evaluating traditional image processing methods,
and the BSD100 dataset contains 100 images with diverse natural
scenes. We train our model using a training set including 91 images
in [20] and additional 100 images in FSRCNN [15] used for training.

B. Data Synthesis

To achieve better performance, we augment the training data in
two steps. We first resize each image in the training set with factor
in [0.6,0.7,0.8,0.9] respectively which generate 5 times the number
of images from the original dataset. We rotate each image by degrees
of 90, 180 and 270. With the two steps, we now have 20 times the
number of images, the augmented data will be used as training data
in the practice of training.

To generate the actual training data from the dataset described
above, we first downsample every image in the dataset with factor s,
and we crop an image block X with size fsup X fsup from LR image
and respectively Y with size s fsup X $fsup from HR image. The pairs
{X® YOIN | form the training set. fe.p is determined by the size
of the receptive field of the model. For GLNet(32, 5,32, 3) we have
receptive field of size 29 x 29, so we set fsup = 29 accordingly. We
set k = | fsub/2] so that most image will be sampled 4 times on
average.

C. Implementation Settings

To make comparisons with existing methods fairly, we first train
the model on the 91-image set and fine-tune the model on General-
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TABLE IV
COMPARISON OF PSNR AND SSIM ON Set5, Set14 AND B100. SF
DENOTES THE SCALING FACTOR. THE BEST AND SECOND BEST RESULTS
ARE DENOTED IN BOLD AND WITH UNDERLINE, RESPECTIVELY. GLNET-L
DENOTES GLNET(96, 36, 36, 8).

Factor | PSNR/SSIM PSNR/SSIM PSNR/SSIM

Dataset SF Bicubic A+ SRCNN
X2 33.66/0.930 36.54/0.954 36.66/0.954
Setb X3 30.39/0.930 32.58/0.909 32.75/0.909
x4 28.42/0.810 30.28/0.860 30.48/0.863
X2 30.23/0.869 32.81/0.906 32.42/0.906
Setl4d x3 27.54/0.774 29.13/0.819 29.28/0.821
x4 26.00/0.702 27.32/0.749 27.49/0.750
X2 29.56/0.668 31.21/0.886 31.36/0.888
B100 x3 27.21/0.739 28.29/0.783 28.41/0.786
x4 25.96/0.668 26.82/0.718 26.90/0.710

Dataset SF VDSR GLNet GLNet-1
X2 37.53/0.959 37.25/0.957 37.40/0.958
Setb x3 33.66/0.921 33.30/0.917 33.54/0.920
x4 31.35/0.884 30.85/0.871 31.08/0.879
X2 33.03/0.912 32.81/0.910 32.95/0.911
Setld x3 29.77/0.831 29.51/0.827 29.65/0.830
x4 28.02/0.767 27.67/0.758 27.92/0.762
X2 31.90/0.896 31.58/0.891 31.76/0.893
B100 x3 28.82/0.798 28.54/0.791 28.73/0.796
x4 27.29/0.725 26.98/0.715 27.14/0.721

100 dataset. We set the batch size as 64. For the initial training,
we use Adam [21] with the learning rate of 0.0001, the momentum
of 0.9 and weight decay of 0.0001. For the fine-tuning, we use
Stochastic Gradient Descent [22] with learning rate of 0.0005. For
both processes, we use Parametric Rectify Linear Units [23] as
activation function. Hardware and software environment: Ubuntu
14.04, Intel i7-5930K@3.5GHz, GTX 1080 GPU.

D. Objective and Subjective Comparisons

We compare our proposed GLNet with RAISR [24] and FSRCNN
[15], which take time consumption into consideration. All the models
are trained on the 91 images. Testing phase runs on pure CPU.
Results can be found in Tab. III. Our model can provide impressive
reconstruction quality while we well control the time consumption,
which achieves real-time level performance.

Fig. 3. Visual comparison between different algorithms. From left to right:
Bicubic, FSRCNN-s, Ours((48,10,48,8)), Ours((96,36,36,8)), VDSR,
Ground truth.

We also test our model on several different datasets for recon-
struction quality, as is shown in Tab. IV. Our method achieves
superior performance to most other SR methods. We also prove the
scalability of our model by training a GLNet(96, 36, 36, 8) which has
a greater number of parameters and compare the quality with state-
of-the-art methods. It provides comparable results with state-of-the-
art methods and consumes less time for reconstruction. The visual
quality illustration is presented in Fig. 3. We can see that GLNet
achieves superior visual quality to state-of-the-art method VDSR.

IV. CONCLUSIONS

This paper introduces an efficient and effective GLNet for real-
time image super-resolution. The dilated convolutions and additional
local queue jumping path are employed to achieve satisfactory SR
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reconstruction quality while keeping the time consumption low.
Our model is also highly scalable so that it can handle different
quality/latency requirements. Experiments show that our model runs
faster to achieve the equal quality as other state-of-the-art methods
and outperforms other models under the equal latency constraints.
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